bilby.core.likelihood.GeorgeLikelihood
- class bilby.core.likelihood.GeorgeLikelihood(kernel, mean_model, t, y, yerr=1e-06)[source]
Bases:
_GPLikelihood
- __init__(kernel, mean_model, t, y, yerr=1e-06)[source]
Basic Gaussian Process likelihood interface for celerite and george. For celerite documentation see: https://celerite.readthedocs.io/en/stable/ For george documentation see: https://george.readthedocs.io/en/latest/
- Parameters:
- kernel: george.kernels.Kernel
celerite or george kernel. See the respective package documentation about the usage.
- mean_model: george.modeling.Model
Mean model
- t: array_like
The times or x values of the data set.
- y: array_like
The y values of the data set.
- yerr: float, int, array_like, optional
The error values on the y-values. If a single value is given, it is assumed that the value applies for all y-values. Default is 1e-6, effectively assuming that no y-errors are present.
- __call__(*args, **kwargs)
Call self as a function.
Methods
__init__
(kernel, mean_model, t, y[, yerr])Basic Gaussian Process likelihood interface for celerite and george.
Calculate the log-likelihood for the Gaussian process given the current parameters.
Difference between log likelihood and noise log likelihood
- Returns:
set_parameters
(parameters)Safely set a set of parameters to the internal instances of the gp and mean_model, as well as the parameters dict.
Attributes
marginalized_parameters
meta_data
- log_likelihood()[source]
Calculate the log-likelihood for the Gaussian process given the current parameters.
- Returns:
- float: The log-likelihood value.