bilby.core.likelihood.AnalyticalMultidimensionalCovariantGaussian

class bilby.core.likelihood.AnalyticalMultidimensionalCovariantGaussian(mean, cov)[source]

Bases: Likelihood

A multivariate Gaussian likelihood with known analytic solution.

Parameters:
mean: array_like

Array with the mean values of distribution

cov: array_like

The ndim*ndim covariance matrix

__init__(mean, cov)[source]

Empty likelihood class to be subclassed by other likelihoods

Parameters:
parameters: dict

A dictionary of the parameter names and associated values

__call__(*args, **kwargs)

Call self as a function.

Methods

__init__(mean, cov)

Empty likelihood class to be subclassed by other likelihoods

log_likelihood()

Returns:

log_likelihood_ratio()

Difference between log likelihood and noise log likelihood

noise_log_likelihood()

Returns:

Attributes

dim

marginalized_parameters

meta_data

log_likelihood()[source]
Returns:
float
log_likelihood_ratio()[source]

Difference between log likelihood and noise log likelihood

Returns:
float
noise_log_likelihood()[source]
Returns:
float