bilby.hyper.likelihood.HyperparameterLikelihood
- class bilby.hyper.likelihood.HyperparameterLikelihood(posteriors, hyper_prior, sampling_prior=None, log_evidences=None, max_samples=1e+100)[source]
Bases:
Likelihood
A likelihood for inferring hyperparameter posterior distributions
See Eq. (34) of https://arxiv.org/abs/1809.02293 for a definition.
- Parameters:
- posteriors: list
An list of pandas data frames of samples sets of samples. Each set may have a different size.
- hyper_prior: `bilby.hyper.model.Model`
The population model, this can alternatively be a function.
- sampling_prior: `bilby.hyper.model.Model`
The sampling prior, this can alternatively be a function.
- log_evidences: list, optional
Log evidences for single runs to ensure proper normalisation of the hyperparameter likelihood. If not provided, the original evidences will be set to 0. This produces a Bayes factor between the sampling prior and the hyperparameterised model.
- max_samples: int, optional
Maximum number of samples to use from each set.
- __init__(posteriors, hyper_prior, sampling_prior=None, log_evidences=None, max_samples=1e+100)[source]
Empty likelihood class to be subclassed by other likelihoods
- Parameters:
- parameters: dict
A dictionary of the parameter names and associated values
- __call__(*args, **kwargs)
Call self as a function.
Methods
__init__
(posteriors, hyper_prior[, ...])Empty likelihood class to be subclassed by other likelihoods
- Returns:
Difference between log likelihood and noise log likelihood
- Returns:
resample_posteriors
([max_samples])Convert list of pandas DataFrame object to dict of arrays.
Attributes
marginalized_parameters
meta_data
- log_likelihood_ratio()[source]
Difference between log likelihood and noise log likelihood
- Returns:
- float
- resample_posteriors(max_samples=None)[source]
Convert list of pandas DataFrame object to dict of arrays.
- Parameters:
- max_samples: int, opt
Maximum number of samples to take from each posterior, default is length of shortest posterior chain.
- Returns
- =======
- data: dict
Dictionary containing arrays of size (n_posteriors, max_samples) There is a key for each shared key in self.posteriors.