Beta(alpha, beta[, minimum, maximum, name, ...])
|
|
Categorical(ncategories[, name, ...])
|
|
Cauchy(alpha, beta[, name, latex_label, ...])
|
|
ChiSquared(nu[, name, latex_label, unit, ...])
|
|
Cosine([minimum, maximum, name, ...])
|
|
DeltaFunction(peak[, name, latex_label, unit])
|
|
Exponential(mu[, name, latex_label, unit, ...])
|
|
FermiDirac(sigma[, mu, r, name, ...])
|
|
Gamma(k[, theta, name, latex_label, unit, ...])
|
|
Gaussian(mu, sigma[, name, latex_label, ...])
|
|
HalfGaussian(sigma[, name, latex_label, ...])
|
|
HalfNormal(sigma[, name, latex_label, unit, ...])
|
A synonym for the HalfGaussian distribution. |
LogGaussian(mu, sigma[, name, latex_label, ...])
|
Synonym of LogNormal prior. |
LogNormal(mu, sigma[, name, latex_label, ...])
|
|
LogUniform(minimum, maximum[, name, ...])
|
|
Logistic(mu, scale[, name, latex_label, ...])
|
|
Lorentzian(alpha, beta[, name, latex_label, ...])
|
Synonym for the Cauchy distribution |
Normal(mu, sigma[, name, latex_label, unit, ...])
|
A synonym for the Gaussian distribution. |
PowerLaw(alpha, minimum, maximum[, name, ...])
|
|
Sine([minimum, maximum, name, latex_label, ...])
|
|
StudentT(df[, mu, scale, name, latex_label, ...])
|
|
SymmetricLogUniform(minimum, maximum[, ...])
|
|
Triangular(mode, minimum, maximum[, name, ...])
|
Define a new prior class which draws from a triangular distribution. |
TruncatedGaussian(mu, sigma, minimum, maximum)
|
|
TruncatedNormal(mu, sigma, minimum, maximum)
|
A synonym for the TruncatedGaussian distribution. |
Uniform(minimum, maximum[, name, ...])
|
|